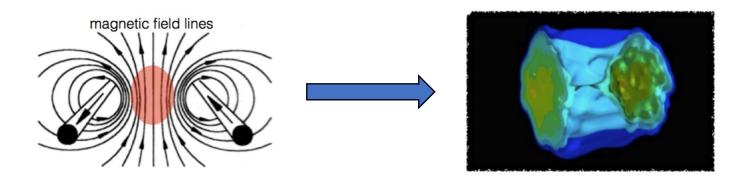
Observation of the electromagnetic field effect via charge-dependent directed flow in isobar collisions at $\sqrt{s_{NN}}$ = 200 GeV

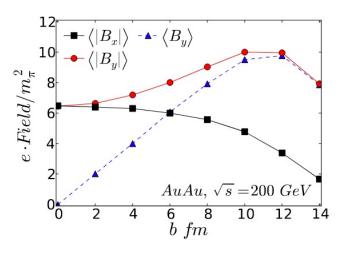
Dhananjaya Thakur (for the STAR collaboration)

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou

15th May 2022



Hot QCD Matter 2022 Goa, India

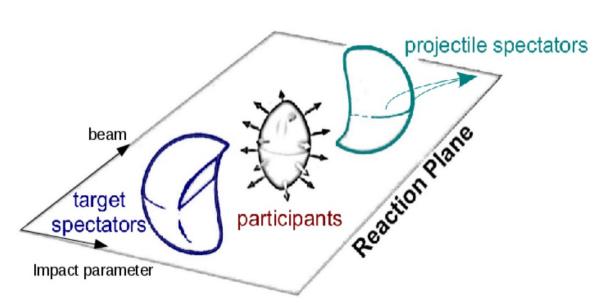

Electromagnetic field in heavy-ion collisions

- \triangleright An ultra strong magnetic field will be created in heavy-ion collisions ($eB \sim m^2_{\pi}$ at the top RHIC energy)
- > we study interaction between the EM field and the QGP medium

- > Two currents in opposite beam direction: Magnetic fields of the two sources add up.
- ➤ With this magnetic field, interesting phenomena, such as the Chiral Magnetic Effect (CME) can be observed.

B-field based on on MC Glauber

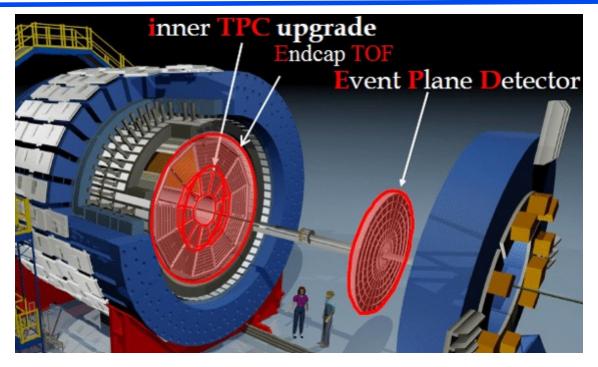
(A. Bzdak and V.S. Phys.Lett. B710 (2012) 171)



Collision geometry and the directed flow

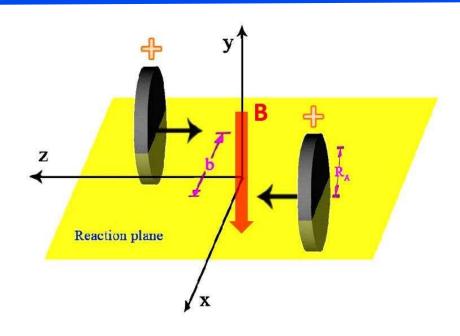
Asymmetry in coordinate space converts into momentum asymmetry with respect to the symmetry plane due to interaction,

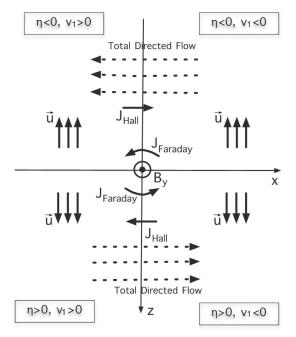
$$\frac{dN}{d\phi} = \frac{1}{2\pi} [1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_s))] \longrightarrow v_n = \langle \cos(n[\phi - \Psi_s]) \rangle$$
Directed flow: $v_1 = \langle \cos(\phi - \Psi) \rangle$


- Probe early stage of the collisions, where strong EM-field expected.
- 1st order event plane angle measured by Zero Degree Calorimeters (ZDC)
- ➤ Here, the rapidity-odd component of v₁ will be reported

Selyuzhenkov and S. Voloshin, PRC 77 (2008), 034904 A.M.Poskanzer, S.A.Voloshin, PRC 58 (1998), 1671-1678

STAR detector

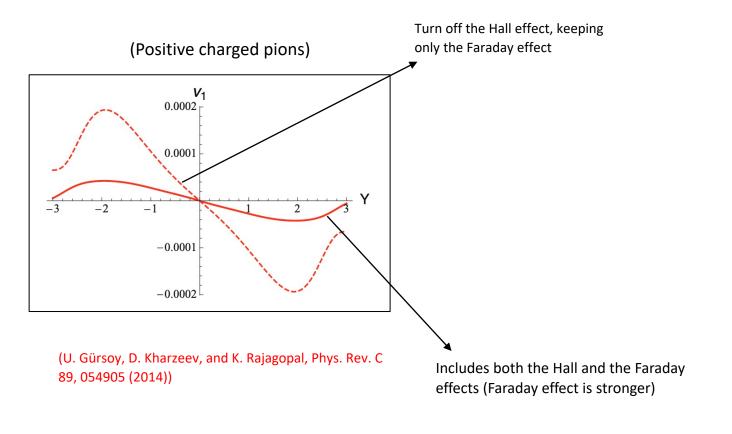


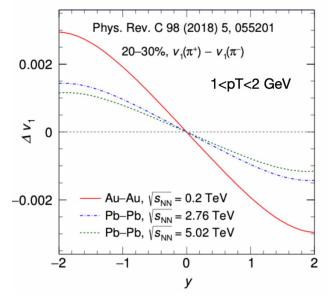

(Journal of Physics: Conference Series 742 (2016) 012022)

- ightharpoonup TPC ($|\eta| < 1$, $0 < \varphi < 2\pi$) + TOF ($|\eta| < 0.9$) for PID.
- \triangleright ZDC ($|\eta| > 6.3$) for 1st order event plane reconstruction
- Analyzed data sets : Ru+Ru and Zr+Zr at $\sqrt{s_{NN}}$ = 200 GeV (year-2018)
- ➤ The reconstructed event plane distortion from detector non-uniformity and/or beam offset are corrected using the recentering and flattening methods.
- ➤ Event plane resolution calculated from correlation between west and east ZDC and used for the correction.

Probing EM-field via charge dependent v₁ splitting

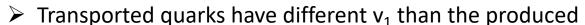
(U. Gürsoy, D. Kharzeev, and K. Rajagopal, Phys. Rev. C 89, 054905 (2014))

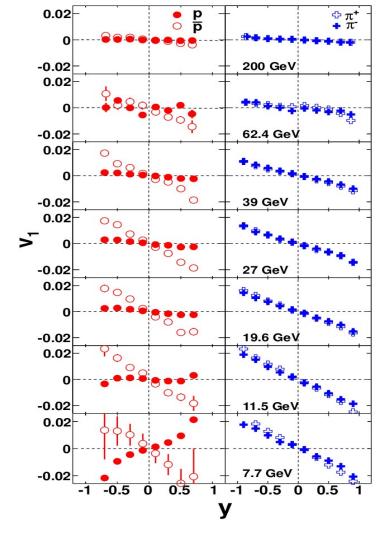

- Beam direction: z direction; Impact parameter: x direction; Reaction Plane: xz
- Magnetic field B to point in the +y direction
- ightharpoonup Time varying \vec{B} induces \vec{E} field => Faraday effect
- \triangleright Expansion velocity, u of the conducting QGP produced in the collision points in the +z (-z) direction.
- ➤ Lorentz force results in an electric current perpendicular to both the u and B, akin to the classical Hall effect



Charge dependent v₁ splitting

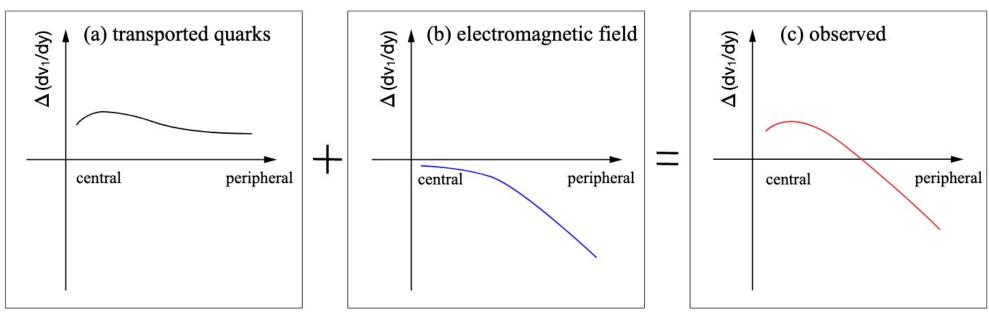
- Faraday and Hall effects are competing effects Net effect affects v₁
- ightharpoonup If Faraday effect is dominant, $\Delta v_1 = v_1^+ v_1^-$ decrease a function of rapidity.


The slope of Au+Au (200 GeV) > Pb-Pb(2.76 TeV) > Pb-Pb (5.02 TeV)



Effect of transported quarks to the charge dependent v₁ splitting

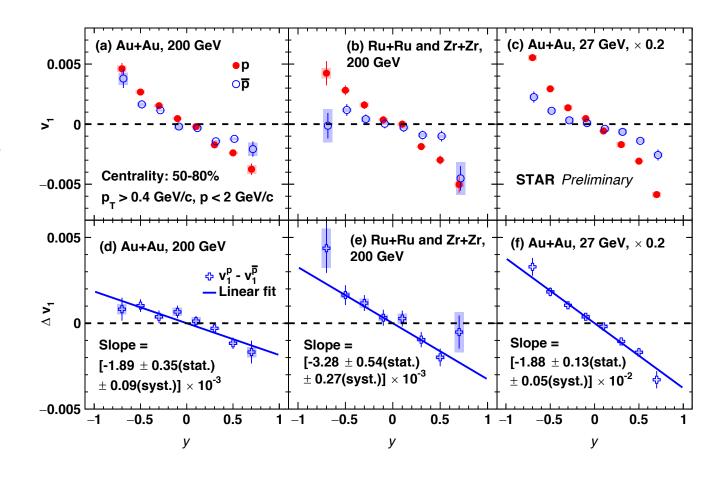
Particle		# transported quark	Sign of v ₁	v ₁
Proton	p (uud)	3	$v_1^p > 0 \text{ at } \eta > 0$	$v^p > v^{\bar{p}}$ at $n > 0$
	$\bar{\mathrm{p}}$ ($\bar{\mathrm{u}}\bar{u}ar{d}$)	0	$v_1^{\bar{p}} < 0 \text{ at } \eta > 0$	$v_1^p > v_1^p \text{ at } \eta > 0$
Kaon	K+ (us̄)	1	$v_1^{K^+} > 0 \text{ at } \eta > 0$	$v_1^{K^+} > v_1^{K^-} \text{ at } \eta > 0$
	$K^{-}(\bar{u}s)$	0	$v_1^{K^-} < 0 \text{ at } \eta > 0$	
Pion	π^+ (u $\overline{ m d}$)	1	$v_1^{\pi^+} < 0 \text{ at } \eta > 0$	(#d > #u) as Au is neutron rich
	π^- (d $\bar{\mathrm{u}}$)	1	$v_1^{\pi^+} < 0 \text{ at } \eta > 0$	$v_1^{\pi^-} > v_1^{\pi^+} \text{ at } \eta > 0$


(L. Adamczyk *et al.* (STAR Collaboration) Phys. Rev. Lett. 112, 162301 (2014)

Effect of transported quarks + EM-field to the charge dependent v₁ splitting

Illustration for proton and anti-proton:

Transported quarks have positive dv₁/dy

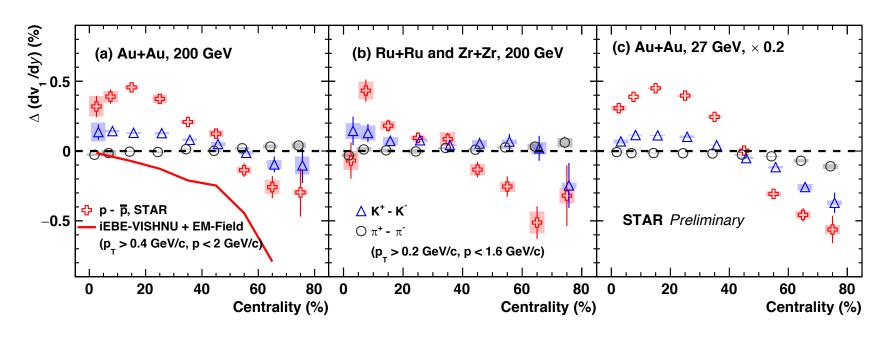

(Y. Guo et al., Phys. Rev. C 86, 044901 (2012)) (L. Adamczyk et al. (STAR), Phys. Rev. Lett. 112, 162301 (2014)) Faraday effect/spectator Coulomb dominate over Hall effect

(U. Gursoy et al. Phys. Rev. C 98, 055201 (2018)) (U. Gursoy et al. Phys. Rev. C 89, 054905 (2014))

$$\Delta(dv1/dy) = dv_{1}^{+}/dy - dv_{1}^{-}/dy$$

Charge splitting of v₁ in 50-80% A+A collisions

- First observation of negative $\Delta dv_1/dy$ between p and \bar{p} for peripheral collisions
- > Significance larger than 5σ
- ➤ can not be explained by transported quarks → effect of EM-field?



Steeper in lower energy => longer lifetime of magnetic field

Charge splitting of v₁ as a function of centrality

(iEBE-VISHNU + EM-Field: U. Gursoy et al. Phys. Rev. C 98, 055201 (2018))

- \triangleright $\Delta dv_1/dy$ is decreasing as a function of centrality for protons.
- \triangleright Negative $\Delta dv_1/dy$ in peripheral collisions => dominance of Faraday/Coulomb effect.
- ➤ The splitting is also observed between K⁺ and K⁻ but is less significant than pions.

Summary

- Charge dependent directed flow provides a probe to EM effect as well as transported quarks.
- $ightharpoonup \Delta dv_1/dy$ between protons and anti-protons changes sign from positive value in central collisions to negative value in peripheral collisions
 - ✓ Positive $\Delta dv_1/dy$ in central collisions : transported quark contribution
 - ✓ Significant negative $\Delta dv_1/dy$ in peripheral collisions : dominance of Faraday/Coulomb effect.
- Sign of $\Delta dv_1/dy$ for protons in peripheral collisions consistent with expectation from iEBE-VISHNU + EM-Field model, and consistent with expectation from dominance of Faraday/Coulomb over Hall effect.

Thank you!!

